Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurorobot ; 17: 1154427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342389

RESUMO

Human-machine interfaces (HMIs) can be used to decode a user's motor intention to control an external device. People that suffer from motor disabilities, such as spinal cord injury, can benefit from the uses of these interfaces. While many solutions can be found in this direction, there is still room for improvement both from a decoding, hardware, and subject-motor learning perspective. Here we show, in a series of experiments with non-disabled participants, a novel decoding and training paradigm allowing naïve participants to use their auricular muscles (AM) to control two degrees of freedom with a virtual cursor. AMs are particularly interesting because they are vestigial muscles and are often preserved after neurological diseases. Our method relies on the use of surface electromyographic records and the use of contraction levels of both AMs to modulate the velocity and direction of a cursor in a two-dimensional paradigm. We used a locking mechanism to fix the current position of each axis separately to enable the user to stop the cursor at a certain location. A five-session training procedure (20-30 min per session) with a 2D center-out task was performed by five volunteers. All participants increased their success rate (Initial: 52.78 ± 5.56%; Final: 72.22 ± 6.67%; median ± median absolute deviation) and their trajectory performances throughout the training. We implemented a dual task with visual distractors to assess the mental challenge of controlling while executing another task; our results suggest that the participants could perform the task in cognitively demanding conditions (success rate of 66.67 ± 5.56%). Finally, using the Nasa Task Load Index questionnaire, we found that participants reported lower mental demand and effort in the last two sessions. To summarize, all subjects could learn to control the movement of a cursor with two degrees of freedom using their AM, with a low impact on the cognitive load. Our study is a first step in developing AM-based decoders for HMIs for people with motor disabilities, such as spinal cord injury.

2.
Aging Dis ; 14(2): 428-449, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37008053

RESUMO

Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.

3.
Sci Rep ; 11(1): 9521, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947925

RESUMO

Mounting evidence implicates dysfunctional GABAAR-mediated neurotransmission as one of the underlying causes of learning and memory deficits observed in the Ts65Dn mouse model of Down syndrome (DS). The specific origin and nature of such dysfunction is still under investigation, which is an issue with practical consequences to preclinical and clinical research, as well as to the care of individuals with DS and anxiety disorder or those experiencing seizures in emergency room settings. Here, we investigated the effects of GABAAR positive allosteric modulation (PAM) by diazepam on brain activity, synaptic plasticity, and behavior in Ts65Dn mice. We found Ts65Dn mice to be less sensitive to diazepam, as assessed by electroencephalography, long-term potentiation, and elevated plus-maze. Still, diazepam pre-treatment displayed typical effectiveness in reducing susceptibility and severity to picrotoxin-induced seizures in Ts65Dn mice. These findings fill an important gap in the understanding of GABAergic function in a key model of DS.


Assuntos
Diazepam/farmacologia , Síndrome de Down/tratamento farmacológico , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Picrotoxina/farmacologia , Convulsões/induzido quimicamente , Transmissão Sináptica/efeitos dos fármacos
4.
Nutrients ; 12(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466610

RESUMO

Patients with Parkinson's disease (PD) manifest nonmotor and motor symptoms. Autonomic cardiovascular dysregulation is a common nonmotor manifestation associated with increased morbimortality. Conventional clinical treatment alleviates motor signs but does not change disease progression and fails in handling nonmotor features. Nutrition is a key modifiable determinant of chronic disease. This study aimed to assess the effects of propolis on cardiological features, heart rate (HR) and heart rate variability (HRV) and on nigrostriatal dopaminergic damage, detected by tyrosine hydroxylase (TH) immunoreactivity, in the 6-hydroxydopamine (6-OHDA) rat model of PD. Male Wistar rats were injected bilaterally with 6-OHDA or saline into the striatum and were treated with propolis or water for 40 days. Autonomic function was assessed by time domain parameters (standard deviation of all normal-to-normal intervals (SDNN) and square root of the mean of the squared differences between adjacent normal RR intervals (RMSSD)) of HRV calculated from electrocardiogram recordings. Reductions in HR (p = 1.47×10-19), SDNN (p = 3.42×10-10) and RMSSD (p = 8.2×10-6) detected in parkinsonian rats were reverted by propolis. Propolis attenuated neuronal loss in the substantia nigra (p = 5.66×10-15) and reduced striatal fiber degeneration (p = 7.4×10-5) in 6-OHDA-injured rats, which also showed significant weight gain (p = 1.07×10-5) in comparison to 6-OHDA-lesioned counterparts. Propolis confers cardioprotection and neuroprotection in the 6-OHDA rat model of PD.


Assuntos
Cardiotônicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxidopamina/efeitos adversos , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Própole/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina , Frequência Cardíaca , Masculino , Doença de Parkinson/patologia , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Sci Rep ; 10(1): 6763, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317689

RESUMO

Modulation of brain activity is one of the main mechanisms capable of demonstrating the synchronization dynamics of neural oscillations. In epilepsy, modulation is a key concept since seizures essentially result from neural hypersynchronization and hyperexcitability. In this study, we have introduced a time-dependent index based on the Kullback-Leibler divergence to quantify the effects of phase and frequency modulations of neural oscillations in neonatal mice exhibiting epileptiform activity induced by Zika virus (ZIKV) infection. Through this index, we demonstrate that fast oscillations (gamma and beta 2) are the more susceptible modulated rhythms in terms of phase, during seizures, whereas slow waves (delta and theta) mainly undergo changes in frequency. The index also allowed detection of specific patterns associated with the interdependent modulation of phase and frequency in neural activity. Furthermore, by comparing ZIKV modulations with the general computational model Epileptors, we verify different signatures related to the brain rhythms modulation in phase and frequency. These findings instigate new studies on the effects of ZIKV infection on neuronal networks from electrophysiological activities, and how different mechanisms can trigger epilepsy.


Assuntos
Ondas Encefálicas/fisiologia , Epilepsia/fisiopatologia , Neurônios/fisiologia , Infecção por Zika virus/virologia , Animais , Ritmo beta/fisiologia , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Epilepsia/complicações , Epilepsia/virologia , Ritmo Gama/fisiologia , Humanos , Camundongos , Neurônios/virologia , Zika virus/patogenicidade , Infecção por Zika virus/complicações , Infecção por Zika virus/fisiopatologia
6.
Sci Rep ; 9(1): 4051, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858526

RESUMO

Pre-eclampsia (PE) affects approximately 2 to 8% of pregnant women, causing blood pressure above 140 × 90 mmHg and proteinuria, normally after the 20th gestation week. If unsuccessfully treated, PE can lead to self-limited seizures (Eclampsia) that could eventually result in death of the mother and her fetus. The present study reports an experimental model of preeclampsia hypertension in pregnant (HP) and non-pregnant (H) Wistar rats by partially clamping one of their renal arteries. Pregnant (P) and non-pregnant (C) controls were provided. Differently from controls (C and P), H and HP animals presented a steady rise in BP two weeks after renal artery clamping. Injection of pentylenetetrazol (PTZ) induced behavioral and electroencephalographic seizures in all groups, which were increased in number, duration, amplitude and power accompanied by decreased latency in HP animals (p < 0.05). Consistent results were obtained in in vitro experimentation. Immunohistochemistry of hippocampus tissue in HP animals showed decreased density of neurons nuclei in CA1, CA3 and Hilus and increased density of astrocytes in CA1, CA3 and gyrus (p < 0.05). The present findings show that the clamping of one renal arteries to 0.15 mm and PTZ administration were able to induce signs similar to human PE in pregnant Wistar rats.


Assuntos
Pressão Sanguínea , Hipertensão/fisiopatologia , Pré-Eclâmpsia/fisiopatologia , Complicações Cardiovasculares na Gravidez/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Feto , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Humanos , Hipertensão/diagnóstico por imagem , Hipertensão/etiologia , Pré-Eclâmpsia/diagnóstico por imagem , Gravidez , Complicações Cardiovasculares na Gravidez/diagnóstico por imagem , Ratos , Ratos Wistar , Artéria Renal/diagnóstico por imagem , Artéria Renal/fisiopatologia
7.
Sci Transl Med ; 10(444)2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875203

RESUMO

Although congenital Zika virus (ZIKV) exposure has been associated with microcephaly and other neurodevelopmental disorders, long-term consequences of perinatal infection are largely unknown. We evaluated short- and long-term neuropathological and behavioral consequences of neonatal ZIKV infection in mice. ZIKV showed brain tropism, causing postnatal-onset microcephaly and several behavioral deficits in adulthood. During the acute phase of infection, mice developed frequent seizures, which were reduced by tumor necrosis factor-α (TNF-α) inhibition. During adulthood, ZIKV replication persisted in neonatally infected mice, and the animals showed increased susceptibility to chemically induced seizures, neurodegeneration, and brain calcifications. Altogether, the results show that neonatal ZIKV infection has long-term neuropathological and behavioral complications in mice and suggest that early inhibition of TNF-α-mediated neuroinflammation might be an effective therapeutic strategy to prevent the development of chronic neurological abnormalities.


Assuntos
Encéfalo/patologia , Encéfalo/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Doença Aguda , Animais , Animais Recém-Nascidos , Atrofia , Encéfalo/fisiopatologia , Doença Crônica , Cognição , Inflamação/patologia , Masculino , Camundongos , Atividade Motora , Testes de Neutralização , Estresse Oxidativo , Convulsões/patologia , Convulsões/fisiopatologia , Convulsões/virologia , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral , Redução de Peso , Infecção por Zika virus/patologia , Infecção por Zika virus/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...